LM2727 Evaluation Board

National Semiconductor Application Note 1247 Chris Richardson October 2002

R

M2727 Evaluation Board

Introduction

The LM2727 Evaluation board has been designed for a wide variety of components in order to show the flexibility of the LM2727 chips. The input voltage limitations are the same as the chip: 2.2 to 16VDC. The regulated output voltage range is from 0.6V up to 85% of the input voltage. Output current is limited by the components chosen, however the size of this board and the limitation to SO-8 MOSFETs means a realistic limit of about 10A.

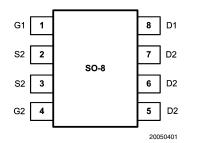
The example design steps 12V down to 3.3V at 4A, with a switching frequency of 800kHz. This design can be modified by following the Design Considerations section of the LM2727 datasheet.

The board is four layers, consisting of signal/power traces on top and bottom, with one internal ground plane and an internal split power plane. All planes are 1oz. copper, and the board is 62mil FR4 laminate.

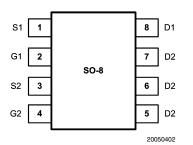
Boot Voltage

The default circuit that comes with the LM2727 demo board uses a bootstrap diode and small capacitor (D1 and Cboot) to provide enough gate-to-source voltage on the high side MOSFET to drive the FET. If a separate rail is available that is more than twice the value of Vin, this higher voltage can be connected directly to the BOOT pin, via the BOOT connector, with a 0.1 μ F bypass capacitor, Cc. In this case D1 and Cboot should be removed from the board. Do not connect both Cc and Cboot/D1 at the same time.

Dual MOSFET Footprints


The LM2727 demo board has two extra footprints for dual N-channel MOSFETs in SO-8 packages. Footprint Q3 corresponds to devices with footprints such as the Si4816DY "LITTLEFOOT Plus" from Vishay Siliconix. Footprint Q4 corresponds to devices with footprints such as the Si4826DY, also from Vishay Siliconix.

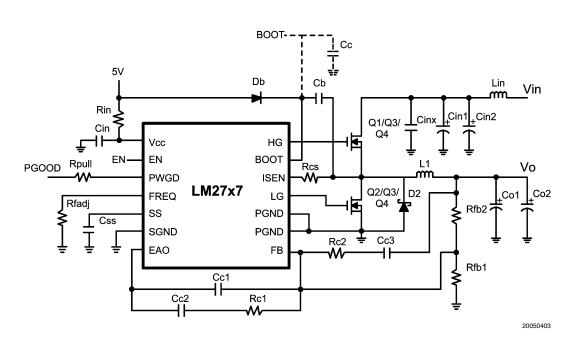
Low Side Diode


A footprint D2 is available for a Schottky diode to be placed in parallel with the low side FET. This can improve efficiency because a discrete Schottky will have a lower forward voltage than the low side FET's body diode. The footprint fits SMA size devices. If desired, the low side FET can be removed entirely, and the LM2727 will run as an asynchronous Buck controller.

Additional Footprints

The 1206 footprints Rc2 and Cc3 are available for designs with more complex compensation needs.

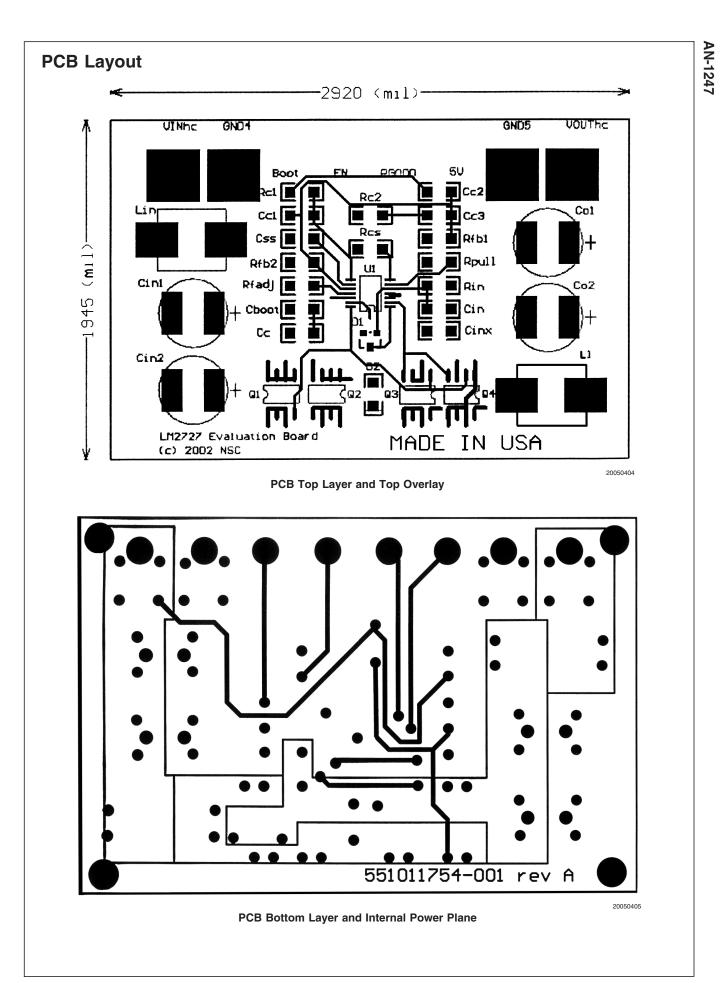
FIGURE 1. Pinout for Dual FET for Footprint Q3



Layout Optimization

The LM2727 PCB layout could be improved with several techniques used in switching converter design. The traces that run from the HG and LG pins of the IC to the gates of the high and low side MOSFETs should be shorter and thicker, reducing their parasitic inductance and resistance. The mid-frequency decoupling capacitor Cinx should be placed as close to the pins of the high side MOSFET as possible. The bulk input capacitors Cin1 and Cin2 should also be placed close, keeping the loop between the input capacitors and the high side MOSFET small. Likewise, the Schottky diode D2 should be located as close as possible to the pins of the low side MOSFET. The local capacitors Cin, Cboot, and Cc (if used) should be close to the pins of the LM2727 IC. These techniques help reduce parasitic inductance throughout the PCB.

Layout Optimization (Continued)



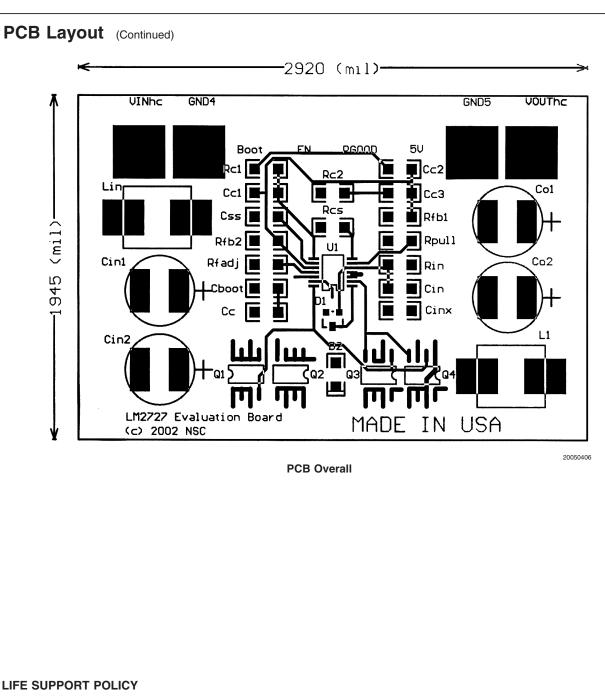

FIGURE	3.	Circuit	Schematic
INCOME	υ.	Circuit	Junematic

TABLE 1.	Bill of	Materials	for	Typical	Ap	plication	Circuit
		materialo		iypioui	AP	phoadon	onoun

ID	Part Number	Туре	Size	Parameters	Qty.	Vendor
U1	LM2727	Synchronous Controller	TSSOP-14		1	NSC
Q1	Si4884DY	N-MOSFET	SO-8	13.5mΩ, @ 4.5V, 15.3nC	1	Vishay
Q2	Si4884DY	N-MOSFET	SO-8	13.5mΩ, @ 4.5V, 15.3nC	1	Vishay
Db	BAT-54	Schottky Diode	SOT-23	30V	1	ON
Lin	P1168.162T	Inductor	12x12x4.5mm	1.6μH, 8.5A 5.4mΩ	1	Pulse
L1	P1168.162T	Inductor	12x12x4.5mm	1.6μH, 8.5A 5.4mΩ	1	Pulse
Cin1	C4532X5R1E106M	Capacitor	1812	10µF 25V 3.3Arms	2	TDK
Cinx	C3216X7R1E105K	Capacitor	1206	1µF, 25V	1	TDK
Co1	6TPB470M	Capacitor	7.3x4.3x3.8mm	470µF 2.5V 55mΩ	2	Sanyo
Cin	C3216X7R1E225K	Capacitor	1206	2.2µF, 25V	1	TDK
Css	VJ1206X123KXX	Capacitor	1206	12nF, 25V	1	Vishay
Cc1	VJ1206A3R9KXX	Capacitor	1206	3.9pF 10%	1	Vishay
Cc2	VJ1206A391KXX	Capacitor	1206	390pF 10%	1	Vishay
Rin	CRCW1206100J	Resistor	1206	10Ω 5%	1	Vishay
Rfadj	CRCW12063052F	Resistor	1206	30.5kΩ 1%	1	Vishay
Rc1	CRCW12069532F	Resistor	1206	95.3kΩ 1%	1	Vishay
Rfb1	CRCW12064871F	Resistor	1206	4.87kΩ 1%	1	Vishay
Rfb2	CRCW12062181F	Resistor	1206	21.8kΩ 1%	1	Vishay
Rcs	CRCW1206272J	Resistor	1206	2.7kΩ 5%	1	Vishay

AN-1247

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

AN-1247

National Semiconductor National Semiconductor Corporation Europe Americas Email: support@nsc.com www.national.com

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.